Ingegneria delle Tecnologie Informatiche

(ex Ingegneria dei Sistemi Informativi)

GEOMETRIA E ALGEBRA

Docenti: 
MARINI STEFANO
Crediti: 
9
Sede: 
PARMA
Anno accademico di offerta: 
2020/2021
Responsabile della didattica: 
MARINI STEFANO
Settore scientifico disciplinare: 
GEOMETRIA (MAT/03)
Semestre dell'insegnamento: 
Primo Semestre
Lingua di insegnamento: 

ITALIANO

Prerequisiti

Non sono richiesti prerequisiti specifici.

Contenuti dell'insegnamento

Il corso ha l'obiettivo di introdurre lo studente alle nozioni di base dell'Algebra Lineare: Geometria Euclidea nello spazio, teoria dei vettori, delle matrici, dei sistemi lineari e delle applicazioni lineari; Geometria analitica nello spazio, rette e piani. Inoltre, il corso si propone di fornire allo studente nozioni matematiche di carattere generale.

Programma esteso

VETTORI NELLO SPAZIO:
-Coordinate;
-Punti o vettori;
-Operazioni componente per componente;
-Il prodotto scalare;
-Lunghezze, distanze e ortogonalità;
-La disuguaglianza di Cauchy-Schwartz;
-Angolo tra vettori;
-Il prodotto vettoriale;

RETTE E PIANI
-Rette e piani;
-Ortogonalità fra rette e piani;
-Appartenenza;
-Parallelismo;
-Piani non paralleli;
-Equazioni cartesiane di una retta;
-Rette sghembe;
-Rette e piani ortogonali;

LO SPAZIO N DIMENSIONALE
-Operazioni su vettori;
-Il prodotto scalare nello spazio n dimensionale;
-Lunghezze, distanze, ortogonalità;
-Angolo tra i vettori;

MATRICI

-Definizione di matrice;
-Operazioni sulle matrici;
-Proprietà delle operazioni sulle matrici;
-Prodotto di matrici;
-Proprietà del prodotto e potenza di una matrice;
-Matrici invertibili e matrice inversa;
-Trasposta di una matrici: matrici simmetriche e antisimmetriche;
-Matrici ortogonali;
-Il determinante;
-Proprietà del determinante;
-Rango per minori;
-Metodo degli orlati;

SISTEMI LINEARI E MATRICI

-Sistemi di equazioni lineari;
-Operazioni elementari;
-Matrici e sistemi ridotti;
-Insieme delle soluzioni;
-Algoritmo di Gauss;
-Rango di una matrice e sistemi lineari;
-Metodo di Cramer;

NUMERI COMPLESSI
- Forma cartesian di un numero complesso;
- Coniugio di un numero complesso;
- Modulo di un numero complesso;
- Forma polare o esponenziale di un numero complesso;
-Operazioni sui complessi;

SPAZI VETTORIALI
-Definizione di uno spazio vettoriale;
-Definizione di un sottospazio vettoriale;
-Combinazioni lineari e spazi generati;
- Lineare dipendenza e indipendenza;
-Basi, coordinate e dimensione;
-cambiamenti di base;
-Spazio somma, somma diretta e formula di Grassmann;

APPLICAZIONI LINEARI
-Prime definizioni;
- Immagine e nucleo di un applicazione lineare;
-Isomorfismi;
-Matrici e applicazioni lineari;

DIAGONALIZZAZIONE DI OPERATORI E MATRICI
-Autovalori e autovettori;
-Il polinomio caratteristico;
-Matrici diagonalizzabili;
-Operatori diagonalizzabili;
-Molteplicità algebrica e geometrica;
-Condizioni per la diagonalizzabilità;

Bibliografia

- L. Alessandrini, L. Nicolodi, "GEOMETRIA A", Uni.Nova (Parma, 2002)
- L. Alessandrini, L. Nicolodi, "GEOMETRIA E ALGEBRA LINEARE, con esercizi svolti" Uni.Nova (Parma 2012)

Metodi didattici

Lezioni frontali in aula.

Modalità verifica apprendimento

La verifica dell'apprendimento prevede un esame finale comprendente una prova scritta e un colloquio orale. Durante il corso sono previste due prove intermedie che valgono ai fini del superamento della prova scritta.

Altre informazioni

Materiale didattico a disposizione dello studente: https://elly.dia.unipr.it/2020/
Ricevimento studenti: su appuntamento scrivendo a stefano.marini@unipr.it